13994

BCS-012

[5]

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination, 2019

BCS-012 : BASIC MATHEMATICS

Time: 3 Hours

Maximum Marks: 100

Note: Question no.1 is compulsory. Attempt any three questions from remaining four questions.

- 1. (a) Show that $\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$
 - (b) Using determinants, find the area of the triangle whose vertices are (2,1), (3, -2) and (-4,-3). [5]
 - (c) Use mathematical induction to show that $1+3+5+....+(2n-1)=n^2 \forall n \in \mathbb{N}$ [5]
 - (d) If α , β are roots of $x^2 3ax + a^2 = 0$, find a if $\alpha^2 + \beta^2 = \frac{1}{7}.$ [5]

(e) If 1,
$$w$$
, w^2 are cube roots of unity, find the value of : $(2+w)(2+w^2)(2+w^{22})(2+w^{26})$ [5]

[5]

[5]

[5]

(g) If
$$y = 3xe^{-x}$$
, find $\frac{d^2y}{dx^2}$

(h)

2.

Evaluate $\int x\sqrt{2x+3}$

(a) If
$$A = \begin{bmatrix} 0 & 3 & -1 \\ 2 & 1 & 3 \\ -1 & 0 & 0 \end{bmatrix}$$
, show that $A(adjA) = |A|I_3$. [5]

$$-1 \quad 0 \quad 0$$

(b) If
$$A = \begin{pmatrix} 3 & -1 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, show that A is equivalent to I_3 .

(c) If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$
, show that $A^2 - 4A + I = O$, where I and O are identity and null matrix respectively of order 2. Also, find A^5 . [5]

that
$$2^{3n}$$
-1 is divisible by 7. [5]

(a) Find all solutions of : $z^2 = z$ [5]

3.

(d)

4.

(b) Solve the equation : [5]
$$x^3 - 13x^2 + 15x + 189 \text{ if one root of the equation exceeds thereby 2.}$$

(c) Solve the inequality
$$\left| \frac{2x-3}{4} \right| \le \frac{2}{3}$$
 [5]

(d) If
$$y = ln \left[e^x \left(\frac{x-1}{x+1} \right)^{\frac{3}{2}} \right]$$
, find $\frac{dy}{dx}$. [5]

(a) If a>0, find local maximum and local minimum

values of
$$f(x) = x^3 - 2ax^2 + a^2x$$
. [5]
(b) Evaluate $\int \frac{dx}{3+e^x}$. [5]

(c) Evaluate
$$\int_{-1}^{2} \frac{x}{(x^2+1)^2} dx$$
 [5]

[5]

(d) Find the area bounded by the
$$x-axis$$
, $y=3+4x$ and the ordinates $x=1$ and $x=2$, by using integration. [5]

(b) If
$$\vec{a} = \hat{i} + 2\hat{j} - \hat{k}$$
, $\vec{c} = 3\hat{i} - \hat{j} + k$, find $(\vec{a} \times \vec{b}) \times \vec{c}$ [5]

(c) Find equation of line passing through (-1,-2,3) and perpendicular to the lines :

$$\frac{x}{1} = \frac{y}{3} = \frac{z}{2}$$
 and $\frac{x+2}{-3} = \frac{y-1}{5} = \frac{z+1}{2}$ [5]

(d) Maximize : [5]
$$Z = 2x + 3y$$

Subject to:

$$x + y \ge 1$$

$$2x + y \le 4$$
$$x + 2 \ y \le 4,$$

$$x \ge 0, y \ge 0$$

BCS-Download all NOTES and PAPERS a